![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjkKRSBjixQf4iFHeEgZm6LKDcTcUJ14GiLxE_rx5XZZ-bSWjIROPg-h0zxMSRQ7d0UgDVNUdBsZ9ajbSi0Ec8bIFj_-B5VgrkePiAGF0lCtnroJCxKwyvQpvAdlk89cn6lpP_MLdI5fr4/s1600/1d_integral.png)
Gaussian quadrature numerically integrates f(s) using a sum,
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgeETAWZRlaZ2BY7c7B7kvTriaKUxR56rdeAbUN29zQlMQpJH4MJNxWt4tDmCPVbdIpBnPOpnHE-giTtlEXQHDI6kNgbHtrCyTtWRJYkQzVELkyxnYtIRu2exGqJtrVCW_9-c951zEEKWw/s1600/gaussian_quadrature.png)
In order to perform numerical integration, Gaussian quadrature requires that the Order of f(s) = 2 x NQP - 1. Hence for a linear function (order 1), (1 + 1) / 2 = 1 NQP is required. For a cubic function (order 3), (3 + 1) / 2 = 2 NQPs are required to integrate the function exactly.
![]() |
Gauss points for the 1x1, 2x2 and 3x3 integration schemes when applied to FEM |
The role of Gaussian quadrature in deriving local stiffness matrix (k)
No comments:
Post a Comment