Pages

Showing posts with label FEM. Show all posts
Showing posts with label FEM. Show all posts

August 09, 2013

FEA vs. FEM

Today when we hear about finite element method (FEM), the first thing that comes across our mind would be a beautiful picture like this:
Simulation result adapted from DTE Desktop Engineering
which is not entirely true.

July 27, 2013

What are Shape Functions?

Shape functions are polynomial functions that interpolate the discrete displacements into continuous functions. They are therefore also known as interpolation functions. The order of polynomial represents the maximal capability of the shape functions to model a displacement field within each element.

Practical decisions in choosing the order of shape functions require the best balance between accuracy and computational cost. Similar to stiffness and force matrices, shape functions are first defined locally and subsequently assembled into global shape functions.

July 19, 2013

What is Jacobian Mapping?

During the assembly of the global stiffness matrix (K), local stiffnesses are numerically integrated in the parent coordinate (the polynomial is a function of s). This is better illustrated by considering the following element:
which sits in a normalised system that varies between -1 and +1. This requires to be mapped to the actual element coordinate (change to a function of x):
This mapping requires the use of Jacobian matrix (J), which is commonly used for coordinate transformation in mathematics.

July 07, 2013

What is Gaussian Quadrature?

Gaussian quadrature is a method that replaces an integral by a sum. As an example, consider the following 1D integral:
Gaussian quadrature numerically integrates f(s) using a sum,

June 30, 2013

Steps to Derive k and Assemble into K

Figure 1 is a flowchart illustrating the sequence for computing the stiffness matrix of a simple problem (the concept is similar to more complex problems). Computing the stiffness matrix involves two main steps:
  1. Derive local stiffness matrices (k)
  2. Assemble k into K, the global stiffness matrix

June 22, 2013

Matrix Methods: Direct vs. Iterative

Direct vs. Iterative methods
The two approaches available for solving global stiffness matrix (K) in FEM are:
Implications on FEA solver
  • For linear simulation e.g. KU = f , Gaussian elimination can be applied directly
  • For nonlinear simulation e.g. K(u)U=f, stiffness is dependent on displacements (u). Therefore an iterative method must be used.

June 06, 2013

What is Meshing?

Meshing involves:
  1. discretisation of a continuum into finite number of elements
  2. defining element type (determined by shape functions)
  3. nodal connectivity
A finite element mesh adapted from Dr TE Kendon's research page
Traditionally, meshing is performed by human user. Automatic meshing technologies are becoming more readily available and user friendly in FEA pre-processors as the competition in the FEA software market gets fierce than ever.

Also read

May 31, 2013

Virtual Work and Weak Formulation

Weak formulations (a.k.a. variational formulations) of partial differential equations (PDEs) are hugely important in the FEM as they enable the concepts of linear algebra in the analysis of PDEs. This concept transform PDEs into sets of linear equations (a matrix) that can eventually be manipulated and inverted using standard matrix methods.

Transforming an equation from strong to weak form requires the use of virtual function, and hence the name Principle of Virtual Work.

Also read
A few worked examples (external pdf)
The role of the Principle of Virtual Work in FEM

May 25, 2013

Boundary Conditions (BCs) vs. Displacement BCs in FEM

This post aims to address the question that arises when one cannot distinguish between boundary conditions (BCs) and displacement BCs in the flowchart of FEM process.

Since FEM is all about solving the FE equation in matrix form, we approach this question using the classic FE equation of a linear elastic problem, KU = f. Let us assume it expands to look like Figure 1:
Figure 1: FE Equation of a linear elastic problem, KU = f
We can now interpret the difference between BCs and displacement BCs from the physical and mathematical perspectives:

May 10, 2013

Steps in FEM: An Overview

Figure 1 is a flowchart illustrating the FEM process for a linear static problem (the concept is similar to more complex problems):
Figure 1: A finite element method process for solving linear static problems (Click to enlarge)
Brief explaination of the different stages in Figure 1:

April 28, 2013

What is the Finite Element Method (FEM)?

In mathematics, partial differential equations (PDEs) can be solved either analytically (exact, continuous) or numerically (approximation, discrete).
Illustrating the position of FEM in the overall picture for solving PDEs
Finite element method (FEM) is a numerical method for solving PDEs. FEM is usually applied to solve for PDEs in continuum mechanics for solid mechanics problems.

Two other popular methods are the finite difference and finite volume methods (FDM FVM), which are frequently used to solve problems in fluid mechanics.